Probability That a Cube Ends in 11
We are given a uniform random integer \( x \) from \( 1 \) to \( 10^{12} \), and are asked to compute the probability that the decimal representation of \( x^3 \) ends in the digits “11”.
This is equivalent to determining the number of integers \( x \in {1, 2, \dots, 10^{12}} \) for which
\[ x^3 \equiv 11 \pmod{100} \]
and dividing that count by \( 10^{12} \).
Modular Reduction Strategy
We aim to solve:
\[ x^3 \equiv 11 \pmod{100} \]
Since \( 100 = 4 \times 25 \), we solve this congruence modulo 4 and modulo 25 separately, and then combine the solutions using the Chinese Remainder Theorem (CRT).
Step 1: Modulo 4
We examine all residues \( x \mod 4 \):
- \( 0^3 \equiv 0 \mod 4 \)
- \( 1^3 \equiv 1 \mod 4 \)
- \( 2^3 \equiv 8 \equiv 0 \mod 4 \)
- \( 3^3 \equiv 27 \equiv 3 \mod 4 \)
So the possible cube residues mod 4 are \( {0, 1, 3} \). Thus, \( x^3 \equiv 11 \equiv 3 \mod 4 \) implies:
\[ x \equiv 3 \mod 4 \]
Step 2: Modulo 25
We need:
\[ x^3 \equiv 11 \mod 25 \]
Try small values:
- \( 1^3 = 1 \)
- \( 2^3 = 8 \)
- \( 3^3 = 27 \)
- …
- \( 16^3 = 4096 \equiv 4096 \mod 25 = 4096 - 25 \times 163 = 4096 - 4075 = 21 \)
- \( 17^3 = 4913 \equiv 4913 - 25 \times 196 = 4913 - 4900 = 13 \)
- \( 18^3 = 5832 \equiv 5832 - 5825 = 7 \)
- \( 19^3 = 6859 \equiv 6859 - 6825 = 34 \mod 25 = 9 \)
- \( 20^3 = 8000 \equiv 8000 \mod 25 = 0 \)
- \( 21^3 = 9261 \equiv 9261 - 9250 = 11 \)
Success! \( x \equiv 21 \mod 25 \) is a solution.
Verify uniqueness: Since the cube map modulo 25 is not injective, we check if there are other solutions.
Try:
- \( x = 71 \): then \( x = 25 \cdot 2 + 21 = 71 \)
- \( x^3 = 71^3 = (70 + 1)^3 = 343000 + 3 \cdot 4900 + 3 \cdot 70 + 1 = 357911 \)
- Ends in 11 ✔️
So \( x \equiv 21 \mod 25 \) yields \( x^3 \equiv 11 \mod 100 \) if and only if \( x \equiv 3 \mod 4 \)
Use CRT to combine:
Find \( x \mod 100 \) such that:
- \( x \equiv 3 \mod 4 \)
- \( x \equiv 21 \mod 25 \)
Let \( x = 25k + 21 \). Plug into first congruence:
\[ 25k + 21 \equiv 3 \mod 4 \Rightarrow k \equiv 2 \mod 4 \]
So \( k = 4m + 2 \), thus:
\[ x = 25k + 21 = 25(4m + 2) + 21 = 100m + 71 \]
Therefore, all solutions are:
\[ x \equiv 71 \mod 100 \]
Final Probability
Among \( 1 \) to \( 10^{12} \), every 100th number satisfies \( x \equiv 71 \mod 100 \). Hence, there are:
\[ \left\lfloor \frac{10^{12}}{100} \right\rfloor = 10^{10} \]
such integers, and the probability is:
\[ \frac{10^{10}}{10^{12}} = \boxed{\frac{1}{100}} \]