We define \( a_n \) as the number of sequences of 1″ and 2″ jumps summing to \( n \). The recurrence is:

\[ a_n = a_{n-1} + a_{n-2}, \quad \text{with } a_0 = 1, \; a_1 = 1. \]

This is identical to the Fibonacci sequence shifted by one index. That is,

\[ a_n = F_{n+1}, \quad \text{where } F_n \text{ is the Fibonacci number with } F_0 = 0, F_1 = 1. \]


Matrix Formulation

The Fibonacci sequence satisfies:

\[ \begin{pmatrix} F_{n+1}
F_n \end{pmatrix} = \begin{pmatrix} 1 & 1
1 & 0 \end{pmatrix}^n \begin{pmatrix} 1
0 \end{pmatrix}. \]

Thus, to compute \( a_{100} = F_{101} \), we need to compute the top-left entry of:

\[ \begin{pmatrix} 1 & 1
1 & 0 \end{pmatrix}^{100} \begin{pmatrix} 1
0 \end{pmatrix}. \]

Let \( M = \begin{pmatrix} 1 & 1 \ 1 & 0 \end{pmatrix} \). Then,

\[ \begin{pmatrix} F_{101}
F_{100} \end{pmatrix} = M^{100} \begin{pmatrix} 1
0 \end{pmatrix}. \]


Final Answer

Hence, the number of jump sequences (paths) the flea can take to cover 100 inches is:

\[ a_{100} = F_{101}. \]

Using known values of Fibonacci numbers:

\[ F_{101} = 573147844013817084101. \]

Reference